If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33^2+x^2=1225
We move all terms to the left:
33^2+x^2-(1225)=0
determiningTheFunctionDomain x^2-1225+33^2=0
We add all the numbers together, and all the variables
x^2-136=0
a = 1; b = 0; c = -136;
Δ = b2-4ac
Δ = 02-4·1·(-136)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{34}}{2*1}=\frac{0-4\sqrt{34}}{2} =-\frac{4\sqrt{34}}{2} =-2\sqrt{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{34}}{2*1}=\frac{0+4\sqrt{34}}{2} =\frac{4\sqrt{34}}{2} =2\sqrt{34} $
| 5(s-4))=125 | | 6(x-1)=-60 | | 4y-11=65 | | 8y=9=8y-3 | | X2-2x-3x=0 | | 8x+3=-157 | | 2n-4=10n+4 | | 7x-8=6x-6 | | 3x-5=2x+65 | | -(5p+3)=-6-4p | | 6(x+3)=-2(4x-3)=5x | | 3x-5=2x=65 | | (2)(n-2=10n+4 | | -11q=-13–10q | | 5+5f=-5+6f | | -8w-4=-2(w-1) | | -x2+2+3=0 | | -9+9z+10=3z+1 | | 5(w+3)=-2+8 | | 0.5x-6=x+0.05x | | 4=15-10t | | 2+10b=b+10+10b | | 3(+2)=5x+8 | | -5(-4+5n)=-6+n | | 2x^2-2+3x+3=0 | | 0.50x+0.15(50)=44.5 | | z−4−35=z−4−3 | | z−4−35=z−4−3. | | -5x+30=-9(x-2) | | 7+15n-2=8n+25-3n | | 5a^2=25 | | -6(1+a)+4=-2a+22 |